auxtest
test suite((ran 38) (failed 0))
test/let1
: pass(define (test/let1 _) (let1 (a 1) (⊦= a 1)))
test/letcar&cdr
: pass(define (test/letcar&cdr _)
(letcar&cdr
(((a d) (cons 1 '())) ((aa dd) (cons 2 3)))
(⊦= a 1)
(⊦= d '())
(⊦= aa 2)
(⊦= dd 3)))
test/letcc/multiarg
: pass(define (test/letcc/multiarg _) (⊦= 'a (letcc k (k 'a))))
test/letcc/delimcc
: pass(define (test/letcc/delimcc _)
(⊦= 41 (+ 1 (resetcc (* 2 (letshiftcc k (k (k 10)))))))
(⊦= 15 (+ 10 (resetcc (+ 2 3))))
(⊦= 13 (+ 10 (resetcc (+ 2 (letshiftcc k 3)))))
(⊦= 15 (+ 10 (resetcc (+ 2 (letshiftcc k (k 3))))))
(⊦= 115 (+ 10 (resetcc (+ 2 (letshiftcc k (+ 100 (k 3)))))))
(⊦= 117 (+ 10 (resetcc (+ 2 (letshiftcc k (+ 100 (k (k 3))))))))
(⊦= 117 (resetcc (+ 10 (resetcc (+ 2 (letshiftcc k (+ 100 (k (k 3))))))))))
test/letcc/delimcc+asai+tutorial
: pass(define (test/letcc/delimcc+asai+tutorial _)
(⊦= 10 (resetcc (sub1 (+ 3 (letshiftcc k (* 5 2))))))
(⊦= 9 (sub1 (resetcc (+ 3 (letshiftcc k (* 5 2))))))
(⊦= 'hello (resetcc (sub1 (+ 3 (letshiftcc k 'hello)))))
(define (prod lst)
(cond ((null? lst) 1))
((zero? (car lst)) (delimcc-discard 'zero))
(else (* (car lst) (prod (cdr lst)))))
(⊦= 'zero (resetcc (prod '(2 3 0 5))))
(define-resetcc f (sub1 (+ 3 (letshiftcc k k))))
(⊦= 12 (f 10))
(define-resetcc g (sub1 (+ 3 (delimcc-extract))))
(⊦= 12 (g 10))
(define (appender lst)
(cond ((null? lst) (delimcc-extract))
(else (cons (car lst) (appender (cdr lst))))))
(define-resetcc A (appender '(1 2 3)))
(⊦= '(1 2 3 4 5 6) (A '(4 5 6)))
(define (walk f tree)
(cond ((null? tree) (void))
(else (walk f (car tree)) (f (cadr tree)) (walk f (caddr tree)))))
(⊦= '(1 2 3)
(§->list
(resetcc+null
(walk (lambda (v) (yield§ v)) '((() 1 ()) 2 (() 3 ()))))))
(⊦= 600
(delimcc-foldr
100
((each prod) (* each prod))
(walk delimcc-cons '((() 1 ()) 2 (() 3 ())))))
(define-resetcc a (append (delimcc-τ '(hello)) '(world)))
(⊦= '(hello world) (a))
(define-resetcc p (append '(hello) (delimcc-lambda (x) (list x)) '(world)))
(⊦= '(hello 4 world) (p 4))
(⊦= '(1 3 3) (resetcc (delimcc-either `(1 ,(add1 2) 3))))
(⊦= '(((p #t) (q #f)))
(let1 (sols '())
(resetcc
(let ((p (delimcc-either '(#t #f)))
(q (delimcc-either '(#t #f))))
(when (and (or p q) (or p (not q)) (or (not p) (not q)))
(push! `((p ,p) (q ,q)) sols))))
sols)))
test/letcc/delimcc+yield
: pass(define (test/letcc/delimcc+yield _)
(⊦= '(1) (resetcc+null (yield 1)))
(⊦= '(1 2) (resetcc+null (yield 1) (yield 2))))
test/letcc/delimcc+yield§
: pass(define (test/letcc/delimcc+yield§ _)
(⊦= '(1) (§->list (resetcc+null (yield§ 1))))
(⊦= '(1 2) (§->list (resetcc+null (yield§ 1) (yield§ 2)))))
test/letcc/delimcc+monad
: pass(define (test/letcc/delimcc+monad _)
(define (reflect meaning) (letshiftcc k (extend k meaning)))
(define (reify* t) (resetcc (eta (t))))
(define (eta x) (list x))
(define (extend f l) (apply append (map f l)))
(define-syntax
reify
(syntax-rules () ((reify body ...) (reify* (τ body ...)))))
(define-syntax
amb
(syntax-rules () ((amb v ...) (reflect (append (reify v) ...)))))
(⊦= '(1 2 3) (reify (amb 1 2 3)))
(⊦= '(8 9 9 10) (reify (+ (amb 1 2) 3 (amb 4 5))))
(⊦= '(31 51) (reify (+ 1 (letcc k (* 10 (amb 3 (k 4)))))))
(define (www)
(define (f x) (+ x (amb 6 4 2 8) (amb 2 4 5 4 1)))
(reify (f (f (amb 0 2 3 4 5 32)))))
(⊦= '(16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
15
17
18
17
14
13
15
16
15
12
11
13
14
13
10
17
19
20
19
16
14
16
17
16
13
12
14
15
14
11
10
12
13
12
9
16
18
19
18
15
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
13
15
16
15
12
11
13
14
13
10
9
11
12
11
8
15
17
18
17
14
12
14
15
14
11
10
12
13
12
9
8
10
11
10
7
14
16
17
16
13
14
16
17
16
13
12
14
15
14
11
10
12
13
12
9
16
18
19
18
15
15
17
18
17
14
13
15
16
15
12
11
13
14
13
10
17
19
20
19
16
14
16
17
16
13
12
14
15
14
11
10
12
13
12
9
16
18
19
18
15
11
13
14
13
10
9
11
12
11
8
7
9
10
9
6
13
15
16
15
12
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
15
17
18
17
14
13
15
16
15
12
11
13
14
13
10
17
19
20
19
16
14
16
17
16
13
12
14
15
14
11
10
12
13
12
9
16
18
19
18
15
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
13
15
16
15
12
11
13
14
13
10
9
11
12
11
8
15
17
18
17
14
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
15
17
18
17
14
13
15
16
15
12
11
13
14
13
10
17
19
20
19
16
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
14
16
17
16
13
12
14
15
14
11
10
12
13
12
9
16
18
19
18
15
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
24
26
27
26
23
22
24
25
24
21
20
22
23
22
19
26
28
29
28
25
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
15
17
18
17
14
13
15
16
15
12
11
13
14
13
10
17
19
20
19
16
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
24
26
27
26
23
22
24
25
24
21
20
22
23
22
19
26
28
29
28
25
25
27
28
27
24
23
25
26
25
22
21
23
24
23
20
27
29
30
29
26
24
26
27
26
23
22
24
25
24
21
20
22
23
22
19
26
28
29
28
25
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
24
26
27
26
23
22
24
25
24
21
20
22
23
22
19
26
28
29
28
25
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
21
23
24
23
20
19
21
22
21
18
17
19
20
19
16
23
25
26
25
22
18
20
21
20
17
16
18
19
18
15
14
16
17
16
13
20
22
23
22
19
17
19
20
19
16
15
17
18
17
14
13
15
16
15
12
19
21
22
21
18
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
20
22
23
22
19
18
20
21
20
17
16
18
19
18
15
22
24
25
24
21
19
21
22
21
18
17
19
20
19
16
15
17
18
17
14
21
23
24
23
20
16
18
19
18
15
14
16
17
16
13
12
14
15
14
11
18
20
21
20
17
23
25
26
25
22
21
23
24
23
20
19
21
22
21
18
25
27
28
27
24
25
27
28
27
24
23
25
26
25
22
21
23
24
23
20
27
29
30
29
26
26
28
29
28
25
24
26
27
26
23
22
24
25
24
21
28
30
31
30
27
25
27
28
27
24
23
25
26
25
22
21
23
24
23
20
27
29
30
29
26
22
24
25
24
21
20
22
23
22
19
18
20
21
20
17
24
26
27
26
23
48
50
51
50
47
46
48
49
48
45
44
46
47
46
43
50
52
53
52
49
50
52
53
52
49
48
50
51
50
47
46
48
49
48
45
52
54
55
54
51
51
53
54
53
50
49
51
52
51
48
47
49
50
49
46
53
55
56
55
52
50
52
53
52
49
48
50
51
50
47
46
48
49
48
45
52
54
55
54
51
47
49
50
49
46
45
47
48
47
44
43
45
46
45
42
49
51
52
51
48
46
48
49
48
45
44
46
47
46
43
42
44
45
44
41
48
50
51
50
47
48
50
51
50
47
46
48
49
48
45
44
46
47
46
43
50
52
53
52
49
49
51
52
51
48
47
49
50
49
46
45
47
48
47
44
51
53
54
53
50
48
50
51
50
47
46
48
49
48
45
44
46
47
46
43
50
52
53
52
49
45
47
48
47
44
43
45
46
45
42
41
43
44
43
40
47
49
50
49
46
44
46
47
46
43
42
44
45
44
41
40
42
43
42
39
46
48
49
48
45
46
48
49
48
45
44
46
47
46
43
42
44
45
44
41
48
50
51
50
47
47
49
50
49
46
45
47
48
47
44
43
45
46
45
42
49
51
52
51
48
46
48
49
48
45
44
46
47
46
43
42
44
45
44
41
48
50
51
50
47
43
45
46
45
42
41
43
44
43
40
39
41
42
41
38
45
47
48
47
44
50
52
53
52
49
48
50
51
50
47
46
48
49
48
45
52
54
55
54
51
52
54
55
54
51
50
52
53
52
49
48
50
51
50
47
54
56
57
56
53
53
55
56
55
52
51
53
54
53
50
49
51
52
51
48
55
57
58
57
54
52
54
55
54
51
50
52
53
52
49
48
50
51
50
47
54
56
57
56
53
49
51
52
51
48
47
49
50
49
46
45
47
48
47
44
51
53
54
53
50)
(www))
(define (wwww)
(define (f x) (+ x (amb 6 4 2 8) (amb 2 4 5 4 1)))
(reify (f (f (f (amb 0 2 3 4 5 32))))))
(⊦= 48000 (length (wwww))))
test/letcc*
: pass(define (test/letcc* _)
(⊦= 3 (letcc* ⤶ ((v (+ 1 (⤶ 1))) (w (+ 2 v))) (+ 4 w)))
(⊦= 5 (letcc* ⤶ ((v (+ 1 (⤶ 1))) (w (+ 2 (⤶ (+ 3 v))))) (+ 1 w)))
(⊦= 3 (letcc* ⤶ ((v (+ 2 (⤶ 2)))) (+ 1 v)))
(⊦= 3 (letcc* ⤶ ((v (+ 2 (⤶ 2)))) (⤶ (+ 1 v))))
(⊦= 2 (letcc* ⤶ ((v (+ 2 (⤶ 2)))) (+ 1 (⤶ v))))
(⊦= 6 (letcc* ⤶ ((v (+ 2 (⤶ 2)))) (+ 1 (⤶ (+ 4 v))))))
test/trycc1
: pass(define (test/trycc1 _)
(⊦= 5 (trycc (✗ (+ 1 (✗)) (+ 2 3)) (else (cons 3 '())))))
test/trycc2
: pass(define (test/trycc2 _)
(⊦= 3 (trycc (✗ (+ 1 2) (+ 2 (✗))) (else (cons 3 '())))))
test/trycc3
: pass(define (test/trycc3 _)
(⊦= '(3) (trycc (✗ (+ 1 (✗)) (+ 2 (✗))) (else (cons 3 '())))))
test/λ
: pass(define (test/λ _)
(⊦= 5 ((λ (x) (+ x 2)) 3))
(⊦= 5 ((λ (x) ((λ (y) (+ x y)) 2)) 3))
(⊦= 5 ((λ (x y) (+ x y)) 2 3)))
test/letmaptensor
: pass(define (test/letmaptensor _)
(⊦= '((((2 a #t) (2 a #t)) ((2 1 #t) (2 1 #f)))
(((3 a #f) (3 a #t)) ((3 2 #f) (3 2 #f)))
(((4 a #t) (4 a #t)) ((4 3 #t) (4 3 #f))))
(letmaptensor
((x (list 1 2 3)) (y `(a ,x)) (z (list (odd? x) (symbol? y))))
(list (add1 x) y z))))
test/letmap
: pass(define (test/letmap _)
(⊦= '((2 a #t)
(2 a #t)
(2 1 #t)
(2 1 #f)
(3 a #f)
(3 a #t)
(3 2 #f)
(3 2 #f)
(4 a #t)
(4 a #t)
(4 3 #t)
(4 3 #f))
(letmap
((x (list 1 2 3)) (y `(a ,x)) (z (list (odd? x) (symbol? y))))
(list (add1 x) y z))))
test/letcc/dfs
: pass(define (test/letcc/dfs _)
(begin
(define t1 '(a (b (d h)) (c e (f i) g)))
(define t2 '(1 (2 (3 6 7) 4 5)))
(letrec ((*saved* '())
(col '())
(witness (gensym))
(dft-node
(lambda (tree)
(cond ((null? tree) (restart))
((not (pair? tree)) tree)
(else
(letcc cc
(push! (τ (cc (dft-node (cdr tree)))) *saved*)
(dft-node (car tree)))))))
(restart
(τ (if (null? *saved*)
witness
(let1 (cont (pop! *saved*)) (cont)))))
(dft-comb
(lambda (another)
(lambda (tree)
(let1 (node1 (dft-node tree))
(if (eq? node1 witness)
witness
(list node1 (dft-node another)))))))
(dft2 (lambda (v)
(if (eq? v witness)
(reverse col)
(begin (push! v col) (restart))))))
(⊦= '(a b d h c e f i g) (dft2 (dft-node t1)))
(set! col '())
(⊦= '((a 1)
(a 2)
(a 3)
(a 6)
(a 7)
(a 4)
(a 5)
(b 1)
(b 2)
(b 3)
(b 6)
(b 7)
(b 4)
(b 5)
(d 1)
(d 2)
(d 3)
(d 6)
(d 7)
(d 4)
(d 5)
(h 1)
(h 2)
(h 3)
(h 6)
(h 7)
(h 4)
(h 5)
(c 1)
(c 2)
(c 3)
(c 6)
(c 7)
(c 4)
(c 5)
(e 1)
(e 2)
(e 3)
(e 6)
(e 7)
(e 4)
(e 5)
(f 1)
(f 2)
(f 3)
(f 6)
(f 7)
(f 4)
(f 5)
(i 1)
(i 2)
(i 3)
(i 6)
(i 7)
(i 4)
(i 5)
(g 1)
(g 2)
(g 3)
(g 6)
(g 7)
(g 4)
(g 5))
(dft2 ((dft-comb t2) t1))))))
test/letnondeterministic/choose-null?
: pass(define (test/letnondeterministic/choose-null? _)
(⊦= '() (letnondeterministic (? ¿ ⊦ • !) (? '()))))
Captured stdout:
((left 0) (tried 1) (accepted 0) (ratio 0.0) (distribution ()))
test/letnondeterministic/choose
: pass(define (test/letnondeterministic/choose _)
(⊦= '(1 2 3) (letnondeterministic (? ¿ ⊦ • !) (? '(1 2 3)))))
Captured stdout:
((left 0)
(tried 7)
(accepted 3)
(ratio 0.428571428571429)
(distribution
((3 0.333333333333333) (2 0.333333333333333) (1 0.333333333333333))))
test/letnondeterministic/choose§
: pass(define (test/letnondeterministic/choose§ _)
(⊦= '(1 2 3)
(letnondeterministic
(? ¿ ⊦ • !)
(? (cons§ 1 (cons§ 2 (cons§ 3 '())))))))
Captured stdout:
((left 0)
(tried 7)
(accepted 3)
(ratio 0.428571428571429)
(distribution
((3 0.333333333333333) (2 0.333333333333333) (1 0.333333333333333))))
test/letnondeterministic/choose-rec
: pass(define (test/letnondeterministic/choose-rec _)
(⊦= '(0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584)
(§->list
(stop§
(λ (v) (> v 3000))
(letnondeterministic§ (? ¿ ⊦ • !) (? (fibs§ 0 1)))))))
test/letnondeterministic/choose+nested
: pass(define (test/letnondeterministic/choose+nested _)
(⊦= '(1 4 3 1 5 3)
(letnondeterministic (? ¿ ⊦ • !) (? `(1 ,(? '(4 5)) 3)))))
Captured stdout:
((left 0)
(tried 17)
(accepted 6)
(ratio 0.352941176470588)
(distribution
((3 0.333333333333333)
(1 0.333333333333333)
(5 0.166666666666667)
(4 0.166666666666667))))
test/letnondeterministic/choose+nested+¿
: pass(define (test/letnondeterministic/choose+nested+¿ _)
(⊦= '(1 4 3 1 5 3)
(letnondeterministic (? ¿ ⊦ • !) (? `(1 ,(¿ '(4 5)) 3)))))
Captured stdout:
((left 0)
(tried 17)
(accepted 6)
(ratio 0.352941176470588)
(distribution
((1 0.333333333333333)
(3 0.333333333333333)
(5 0.166666666666667)
(4 0.166666666666667))))
test/letnondeterministic/choose+double
: pass(define (test/letnondeterministic/choose+double _)
(⊦= '(5 6 6 7 7 8)
(letnondeterministic (? ¿ ⊦ • !) (+ (? '(1 2 3)) (? '(4 5))))))
Captured stdout:
((left 0)
(tried 19)
(accepted 6)
(ratio 0.315789473684211)
(distribution
((6 0.333333333333333)
(7 0.333333333333333)
(5 0.166666666666667)
(8 0.166666666666667))))
test/letnondeterministic/choose+fair+fibs
: pass(define (test/letnondeterministic/choose+fair+fibs _)
(⊦= '((a 0)
(b 0)
(c 0)
(a 1)
(b 1)
(c 1)
(a 1)
(b 1)
(c 1)
(a 2)
(b 2)
(c 2)
(a 3)
(b 3)
(c 3)
(a 5)
(b 5)
(c 5)
(a 8)
(b 8)
(c 8))
(letnondeterministic
21
(? ¿ ⊦ • !)
(? (interleave§
(map§ (lambda (v) (list 'a v)) (fibs§ 0 1))
(map§ (lambda (v) (list 'b v)) (fibs§ 0 1))
(map§ (lambda (v) (list 'c v)) (fibs§ 0 1)))))))
test/letnondeterministic/choose+fair
: pass(define (test/letnondeterministic/choose+fair _)
(⊦= '((a 1) (b 1) (a 2) (b 2) (a 3))
(letnondeterministic
(? ¿ ⊦ • !)
(? (interleave§ '((a 1) (a 2) (a 3)) '((b 1) (b 2)))))))
Captured stdout:
((left 0)
(tried 11)
(accepted 5)
(ratio 0.454545454545455)
(distribution (((a 1) 0.2) ((a 3) 0.2) ((b 1) 0.2) ((a 2) 0.2) ((b 2) 0.2))))
test/letnondeterministic/odd
: pass(define (test/letnondeterministic/odd _)
(⊦= '(1 3)
(letnondeterministic
(? ¿ ⊦ • !)
(let1 (v (? '(1 2 3))) (⊦ (odd? v)) v))))
Captured stdout:
((left 0)
(tried 7)
(accepted 2)
(ratio 0.285714285714286)
(distribution ((1 0.5) (3 0.5))))
test/letnondeterministic/parlor
: pass(define (test/letnondeterministic/parlor _)
(⊦= '((1 1 5)
(1 2 4)
(1 3 3)
(1 4 2)
(1 5 1)
(2 1 4)
(2 2 3)
(2 3 2)
(2 4 1)
(3 1 3)
(3 2 2)
(3 3 1)
(4 1 2)
(4 2 1)
(5 1 1))
(letnondeterministic
(? ¿ ⊦ • !)
(define (two-numbers)
(list (? '(1 2 3 4 5)) (? '(1 2 3 4 5)) (? '(1 2 3 4 5))))
(define (parlor sum)
(let ((nums (two-numbers))) (⊦ (eq? (apply + nums) sum)) nums))
(parlor 7))))
Captured stdout:
((left 0)
(tried 311)
(accepted 15)
(ratio 0.0482315112540193)
(distribution
(((2 2 3) 0.0666666666666667)
((2 3 2) 0.0666666666666667)
((3 2 2) 0.0666666666666667)
((1 3 3) 0.0666666666666667)
((3 1 3) 0.0666666666666667)
((3 3 1) 0.0666666666666667)
((1 2 4) 0.0666666666666667)
((1 4 2) 0.0666666666666667)
((2 1 4) 0.0666666666666667)
((2 4 1) 0.0666666666666667)
((4 1 2) 0.0666666666666667)
((4 2 1) 0.0666666666666667)
((1 1 5) 0.0666666666666667)
((1 5 1) 0.0666666666666667)
((5 1 1) 0.0666666666666667))))
test/letnondeterministic/parlor+sorted
: pass(define (test/letnondeterministic/parlor+sorted _)
(⊦= '((1 1 5) (1 2 4) (1 3 3) (2 2 3))
(letnondeterministic
(? ¿ ⊦ • !)
(define (two-numbers)
(list (? '(1 2 3 4 5)) (? '(1 2 3 4 5)) (? '(1 2 3 4 5))))
(define (parlor sum)
(let ((nums (two-numbers)))
(⊦ (and (eq? (apply + nums) sum) (sorted? nums <)))
nums))
(parlor 7))))
Captured stdout:
((left 0)
(tried 311)
(accepted 4)
(ratio 0.0128617363344051)
(distribution (((1 2 4) 0.25) ((2 2 3) 0.25) ((1 1 5) 0.25) ((1 3 3) 0.25))))
test/letnondeterministic/coin
: pass(define (test/letnondeterministic/coin _)
(⊦= '(((la 1 1) (la 1 2))
((la 1 1) (la 1 2) (la 2 1) (la 2 2) (ny 1 1))
((la 1 1)
(la 1 2)
(la 2 1)
(la 2 2)
(ny 1 1)
(ny 1 2)
(ny 2 1)
(ny 2 2)
(bos 1 1)
(bos 1 2)
(bos 2 1)
(bos 2 2)))
(letnondeterministic
(? ¿ ⊦ • !)
(define (coin? x) (member? x '((la 1 2) (ny 1 1) (bos 2 2))))
(let* ((*paths* '())
(attempts '())
(city (? '(la ny bos)))
(store (? '(1 2)))
(box (? '(1 2)))
(triple (list city store box)))
(push! triple attempts)
(⊦ (coin? triple))
(reverse attempts)))))
Captured stdout:
((left 0)
(tried 43)
(accepted 3)
(ratio 0.0697674418604651)
(distribution
((((la 1 1) (la 1 2) (la 2 1) (la 2 2) (ny 1 1)) 0.333333333333333)
(((la 1 1)
(la 1 2)
(la 2 1)
(la 2 2)
(ny 1 1)
(ny 1 2)
(ny 2 1)
(ny 2 2)
(bos 1 1)
(bos 1 2)
(bos 2 1)
(bos 2 2))
0.333333333333333)
(((la 1 1) (la 1 2)) 0.333333333333333))))
test/letnondeterministic/coin+cut
: pass(define (test/letnondeterministic/coin+cut _)
(⊦= '(((la 1 1) (la 1 2))
((la 1 1) (la 1 2) (ny 1 1))
((la 1 1) (la 1 2) (ny 1 1) (bos 1 1) (bos 1 2) (bos 2 1) (bos 2 2)))
(letnondeterministic
(? ¿ ⊦ • !)
(define (coin? x) (member? x '((la 1 2) (ny 1 1) (bos 2 2))))
(let* ((*paths* '())
(attempts '())
(city (? '(la ny bos)))
(flag (•))
(store (? '(1 2)))
(_ (•))
(box (? '(1 2)))
(triple (list city store box)))
(push! triple attempts)
(⊦ (coin? triple))
(! flag)
(reverse attempts)))))
Captured stdout:
((left 0)
(tried 23)
(accepted 3)
(ratio 0.130434782608696)
(distribution
((((la 1 1) (la 1 2) (ny 1 1) (bos 1 1) (bos 1 2) (bos 2 1) (bos 2 2))
0.333333333333333)
(((la 1 1) (la 1 2)) 0.333333333333333)
(((la 1 1) (la 1 2) (ny 1 1)) 0.333333333333333))))
test/letnondeterministic/graph+cycles/bfs
: pass(define (test/letnondeterministic/graph+cycles/bfs _)
(⊦= '((a b c a) (a b c e a) (a b d e a))
(letnondeterministic
(? ¿ ⊦ • !)
(define (neighbors node)
(letassoc
(node '((a (b)) (b (c d)) (c (a e)) (d (e)) (e (a))))
(else '())))
(define (path node1 node2 seen)
(⊦ (not (member? node1 seen)))
(let1 (n (? (neighbors node1)))
(if (eq? n node2)
(list node2)
(cons n (path n node2 (cons node1 seen))))))
(let* ((source 'a) (p (path source 'a '()))) (cons source p)))))
Captured stdout:
((left 0)
(tried 17)
(accepted 3)
(ratio 0.176470588235294)
(distribution
(((a b c a) 0.333333333333333)
((a b c e a) 0.333333333333333)
((a b d e a) 0.333333333333333))))
test/letnondeterministic/temporal-graphs
: pass(define (test/letnondeterministic/temporal-graphs _)
(define graph-simple
`((a ((b (1 2 3))))
(b ((c (2 5)) (d ,ℕ)))
(c ((a (2 3 4 5 6)) (e ,ℕ)))
(d ((e (3 4 5))))
(e ((a ,ℕ)))))
(define (V g) (map car g))
(⊦= '(((a b) ((a 1) (b 2)))
((a b) ((a 1) (b 3)))
((a c) ((a 1) (b 2) (c 5)))
((a c) ((a 1) (b 3) (c 5)))
((a d) ((a 1) (b 2) (d 3)))
((a d) ((a 1) (b 2) (d 4)))
((a d) ((a 1) (b 2) (d 5)))
((a d) ((a 1) (b 2) (d 6)))
((a d) ((a 1) (b 2) (d 7)))
((a d) ((a 1) (b 3) (d 4)))
((a d) ((a 1) (b 3) (d 5)))
((a d) ((a 1) (b 3) (d 6)))
((a d) ((a 1) (b 3) (d 7)))
((a e) ((a 1) (b 2) (c 5) (e 6)))
((a e) ((a 1) (b 2) (c 5) (e 7)))
((a e) ((a 1) (b 2) (d 3) (e 4)))
((a e) ((a 1) (b 2) (d 3) (e 5)))
((a e) ((a 1) (b 2) (d 4) (e 5)))
((a e) ((a 1) (b 3) (c 5) (e 6)))
((a e) ((a 1) (b 3) (c 5) (e 7)))
((a e) ((a 1) (b 3) (d 4) (e 5)))
((b a) ((b 1) (c 2) (a 3)))
((b a) ((b 1) (c 2) (a 4)))
((b a) ((b 1) (c 2) (a 5)))
((b a) ((b 1) (c 2) (a 6)))
((b a) ((b 1) (c 2) (e 3) (a 4)))
((b a) ((b 1) (c 2) (e 3) (a 5)))
((b a) ((b 1) (c 2) (e 3) (a 6)))
((b a) ((b 1) (c 2) (e 3) (a 7)))
((b a) ((b 1) (c 2) (e 4) (a 5)))
((b a) ((b 1) (c 2) (e 4) (a 6)))
((b a) ((b 1) (c 2) (e 4) (a 7)))
((b a) ((b 1) (c 2) (e 5) (a 6)))
((b a) ((b 1) (c 2) (e 5) (a 7)))
((b a) ((b 1) (c 2) (e 6) (a 7)))
((b a) ((b 1) (c 5) (a 6)))
((b a) ((b 1) (c 5) (e 6) (a 7)))
((b a) ((b 1) (d 2) (e 3) (a 4)))
((b a) ((b 1) (d 2) (e 3) (a 5)))
((b a) ((b 1) (d 2) (e 3) (a 6)))
((b a) ((b 1) (d 2) (e 3) (a 7)))
((b a) ((b 1) (d 2) (e 4) (a 5)))
((b a) ((b 1) (d 2) (e 4) (a 6)))
((b a) ((b 1) (d 2) (e 4) (a 7)))
((b a) ((b 1) (d 2) (e 5) (a 6)))
((b a) ((b 1) (d 2) (e 5) (a 7)))
((b a) ((b 1) (d 3) (e 4) (a 5)))
((b a) ((b 1) (d 3) (e 4) (a 6)))
((b a) ((b 1) (d 3) (e 4) (a 7)))
((b a) ((b 1) (d 3) (e 5) (a 6)))
((b a) ((b 1) (d 3) (e 5) (a 7)))
((b a) ((b 1) (d 4) (e 5) (a 6)))
((b a) ((b 1) (d 4) (e 5) (a 7)))
((b c) ((b 1) (c 2)))
((b c) ((b 1) (c 5)))
((b d) ((b 1) (d 2)))
((b d) ((b 1) (d 3)))
((b d) ((b 1) (d 4)))
((b d) ((b 1) (d 5)))
((b d) ((b 1) (d 6)))
((b d) ((b 1) (d 7)))
((b e) ((b 1) (c 2) (e 3)))
((b e) ((b 1) (c 2) (e 4)))
((b e) ((b 1) (c 2) (e 5)))
((b e) ((b 1) (c 2) (e 6)))
((b e) ((b 1) (c 2) (e 7)))
((b e) ((b 1) (c 5) (e 6)))
((b e) ((b 1) (c 5) (e 7)))
((b e) ((b 1) (d 2) (e 3)))
((b e) ((b 1) (d 2) (e 4)))
((b e) ((b 1) (d 2) (e 5)))
((b e) ((b 1) (d 3) (e 4)))
((b e) ((b 1) (d 3) (e 5)))
((b e) ((b 1) (d 4) (e 5)))
((c a) ((c 1) (a 2)))
((c a) ((c 1) (a 3)))
((c a) ((c 1) (a 4)))
((c a) ((c 1) (a 5)))
((c a) ((c 1) (a 6)))
((c a) ((c 1) (e 2) (a 3)))
((c a) ((c 1) (e 2) (a 4)))
((c a) ((c 1) (e 2) (a 5)))
((c a) ((c 1) (e 2) (a 6)))
((c a) ((c 1) (e 2) (a 7)))
((c a) ((c 1) (e 3) (a 4)))
((c a) ((c 1) (e 3) (a 5)))
((c a) ((c 1) (e 3) (a 6)))
((c a) ((c 1) (e 3) (a 7)))
((c a) ((c 1) (e 4) (a 5)))
((c a) ((c 1) (e 4) (a 6)))
((c a) ((c 1) (e 4) (a 7)))
((c a) ((c 1) (e 5) (a 6)))
((c a) ((c 1) (e 5) (a 7)))
((c a) ((c 1) (e 6) (a 7)))
((c b) ((c 1) (a 2) (b 3)))
((c d) ((c 1) (a 2) (b 3) (d 4)))
((c d) ((c 1) (a 2) (b 3) (d 5)))
((c d) ((c 1) (a 2) (b 3) (d 6)))
((c d) ((c 1) (a 2) (b 3) (d 7)))
((c e) ((c 1) (a 2) (b 3) (d 4) (e 5)))
((c e) ((c 1) (e 2)))
((c e) ((c 1) (e 3)))
((c e) ((c 1) (e 4)))
((c e) ((c 1) (e 5)))
((c e) ((c 1) (e 6)))
((c e) ((c 1) (e 7)))
((d a) ((d 1) (e 3) (a 4)))
((d a) ((d 1) (e 3) (a 5)))
((d a) ((d 1) (e 3) (a 6)))
((d a) ((d 1) (e 3) (a 7)))
((d a) ((d 1) (e 4) (a 5)))
((d a) ((d 1) (e 4) (a 6)))
((d a) ((d 1) (e 4) (a 7)))
((d a) ((d 1) (e 5) (a 6)))
((d a) ((d 1) (e 5) (a 7)))
((d e) ((d 1) (e 3)))
((d e) ((d 1) (e 4)))
((d e) ((d 1) (e 5)))
((e a) ((e 1) (a 2)))
((e a) ((e 1) (a 3)))
((e a) ((e 1) (a 4)))
((e a) ((e 1) (a 5)))
((e a) ((e 1) (a 6)))
((e a) ((e 1) (a 7)))
((e b) ((e 1) (a 2) (b 3)))
((e c) ((e 1) (a 2) (b 3) (c 5)))
((e d) ((e 1) (a 2) (b 3) (d 4)))
((e d) ((e 1) (a 2) (b 3) (d 5)))
((e d) ((e 1) (a 2) (b 3) (d 6)))
((e d) ((e 1) (a 2) (b 3) (d 7))))
(letnondeterministic
-1
(? ¿ ⊦ • !)
(define (path p node1 node2 seen maxlen maxt)
(let* ((lastpair (car p))
(l (caddr lastpair))
(_ (⊦ (< l (add1 maxlen))))
(pair (? (letassoc (node1 graph-simple) (else '()))))
(n (car pair))
(_ (⊦ (not (member? n seen))))
(t₁ (? (cadr pair) (λ (t) (< t maxt))))
(t₀ (cadr lastpair))
(_ (⊦ (> t₁ t₀)))
(newp (cons (list n t₁ (add1 l)) p)))
(cond ((eq? n node2) (reverse newp))
(else (path newp n node2 (cons node1 seen) maxlen maxt)))))
(let* ((vertices (V graph-simple))
(source (? vertices))
(destination (? vertices))
(p (path (list (list source 1 1))
source
destination
'()
15
7)))
(list (list source destination)
(map (λ (triple) (list (car triple) (cadr triple))) p))))))
Captured stdout:
((left 0)
(tried 4013)
(accepted 130)
(ratio 0.0323947171692001)
(distribution
((((a b) ((a 1) (b 2))) 0.00769230769230769)
(((a b) ((a 1) (b 3))) 0.00769230769230769)
(((a c) ((a 1) (b 2) (c 5))) 0.00769230769230769)
(((a c) ((a 1) (b 3) (c 5))) 0.00769230769230769)
(((a d) ((a 1) (b 2) (d 3))) 0.00769230769230769)
(((a d) ((a 1) (b 2) (d 4))) 0.00769230769230769)
(((a d) ((a 1) (b 2) (d 5))) 0.00769230769230769)
(((a d) ((a 1) (b 2) (d 6))) 0.00769230769230769)
(((a d) ((a 1) (b 2) (d 7))) 0.00769230769230769)
(((a d) ((a 1) (b 3) (d 4))) 0.00769230769230769)
(((a d) ((a 1) (b 3) (d 5))) 0.00769230769230769)
(((a d) ((a 1) (b 3) (d 6))) 0.00769230769230769)
(((a d) ((a 1) (b 3) (d 7))) 0.00769230769230769)
(((a e) ((a 1) (b 2) (c 5) (e 6))) 0.00769230769230769)
(((a e) ((a 1) (b 2) (c 5) (e 7))) 0.00769230769230769)
(((a e) ((a 1) (b 2) (d 3) (e 4))) 0.00769230769230769)
(((a e) ((a 1) (b 2) (d 3) (e 5))) 0.00769230769230769)
(((a e) ((a 1) (b 2) (d 4) (e 5))) 0.00769230769230769)
(((a e) ((a 1) (b 3) (c 5) (e 6))) 0.00769230769230769)
(((a e) ((a 1) (b 3) (c 5) (e 7))) 0.00769230769230769)
(((a e) ((a 1) (b 3) (d 4) (e 5))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (a 3))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (a 4))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 3) (a 4))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 3) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 3) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 3) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 4) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 4) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 4) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 5) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 5) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (c 2) (e 6) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (c 5) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (c 5) (e 6) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 3) (a 4))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 3) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 3) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 3) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 4) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 4) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 4) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 5) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 2) (e 5) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 3) (e 4) (a 5))) 0.00769230769230769)
(((b a) ((b 1) (d 3) (e 4) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 3) (e 4) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 3) (e 5) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 3) (e 5) (a 7))) 0.00769230769230769)
(((b a) ((b 1) (d 4) (e 5) (a 6))) 0.00769230769230769)
(((b a) ((b 1) (d 4) (e 5) (a 7))) 0.00769230769230769)
(((b c) ((b 1) (c 2))) 0.00769230769230769)
(((b c) ((b 1) (c 5))) 0.00769230769230769)
(((b d) ((b 1) (d 2))) 0.00769230769230769)
(((b d) ((b 1) (d 3))) 0.00769230769230769)
(((b d) ((b 1) (d 4))) 0.00769230769230769)
(((b d) ((b 1) (d 5))) 0.00769230769230769)
(((b d) ((b 1) (d 6))) 0.00769230769230769)
(((b d) ((b 1) (d 7))) 0.00769230769230769)
(((b e) ((b 1) (c 2) (e 3))) 0.00769230769230769)
(((b e) ((b 1) (c 2) (e 4))) 0.00769230769230769)
(((b e) ((b 1) (c 2) (e 5))) 0.00769230769230769)
(((b e) ((b 1) (c 2) (e 6))) 0.00769230769230769)
(((b e) ((b 1) (c 2) (e 7))) 0.00769230769230769)
(((b e) ((b 1) (c 5) (e 6))) 0.00769230769230769)
(((b e) ((b 1) (c 5) (e 7))) 0.00769230769230769)
(((b e) ((b 1) (d 2) (e 3))) 0.00769230769230769)
(((b e) ((b 1) (d 2) (e 4))) 0.00769230769230769)
(((b e) ((b 1) (d 2) (e 5))) 0.00769230769230769)
(((b e) ((b 1) (d 3) (e 4))) 0.00769230769230769)
(((b e) ((b 1) (d 3) (e 5))) 0.00769230769230769)
(((b e) ((b 1) (d 4) (e 5))) 0.00769230769230769)
(((c a) ((c 1) (a 2))) 0.00769230769230769)
(((c a) ((c 1) (a 3))) 0.00769230769230769)
(((c a) ((c 1) (a 4))) 0.00769230769230769)
(((c a) ((c 1) (a 5))) 0.00769230769230769)
(((c a) ((c 1) (a 6))) 0.00769230769230769)
(((c a) ((c 1) (e 2) (a 3))) 0.00769230769230769)
(((c a) ((c 1) (e 2) (a 4))) 0.00769230769230769)
(((c a) ((c 1) (e 2) (a 5))) 0.00769230769230769)
(((c a) ((c 1) (e 2) (a 6))) 0.00769230769230769)
(((c a) ((c 1) (e 2) (a 7))) 0.00769230769230769)
(((c a) ((c 1) (e 3) (a 4))) 0.00769230769230769)
(((c a) ((c 1) (e 3) (a 5))) 0.00769230769230769)
(((c a) ((c 1) (e 3) (a 6))) 0.00769230769230769)
(((c a) ((c 1) (e 3) (a 7))) 0.00769230769230769)
(((c a) ((c 1) (e 4) (a 5))) 0.00769230769230769)
(((c a) ((c 1) (e 4) (a 6))) 0.00769230769230769)
(((c a) ((c 1) (e 4) (a 7))) 0.00769230769230769)
(((c a) ((c 1) (e 5) (a 6))) 0.00769230769230769)
(((c a) ((c 1) (e 5) (a 7))) 0.00769230769230769)
(((c a) ((c 1) (e 6) (a 7))) 0.00769230769230769)
(((c b) ((c 1) (a 2) (b 3))) 0.00769230769230769)
(((c d) ((c 1) (a 2) (b 3) (d 4))) 0.00769230769230769)
(((c d) ((c 1) (a 2) (b 3) (d 5))) 0.00769230769230769)
(((c d) ((c 1) (a 2) (b 3) (d 6))) 0.00769230769230769)
(((c d) ((c 1) (a 2) (b 3) (d 7))) 0.00769230769230769)
(((c e) ((c 1) (a 2) (b 3) (d 4) (e 5))) 0.00769230769230769)
(((c e) ((c 1) (e 2))) 0.00769230769230769)
(((c e) ((c 1) (e 3))) 0.00769230769230769)
(((c e) ((c 1) (e 4))) 0.00769230769230769)
(((c e) ((c 1) (e 5))) 0.00769230769230769)
(((c e) ((c 1) (e 6))) 0.00769230769230769)
(((c e) ((c 1) (e 7))) 0.00769230769230769)
(((d a) ((d 1) (e 3) (a 4))) 0.00769230769230769)
(((d a) ((d 1) (e 3) (a 5))) 0.00769230769230769)
(((d a) ((d 1) (e 3) (a 6))) 0.00769230769230769)
(((d a) ((d 1) (e 3) (a 7))) 0.00769230769230769)
(((d a) ((d 1) (e 4) (a 5))) 0.00769230769230769)
(((d a) ((d 1) (e 4) (a 6))) 0.00769230769230769)
(((d a) ((d 1) (e 4) (a 7))) 0.00769230769230769)
(((d a) ((d 1) (e 5) (a 6))) 0.00769230769230769)
(((d a) ((d 1) (e 5) (a 7))) 0.00769230769230769)
(((d e) ((d 1) (e 3))) 0.00769230769230769)
(((d e) ((d 1) (e 4))) 0.00769230769230769)
(((d e) ((d 1) (e 5))) 0.00769230769230769)
(((e a) ((e 1) (a 2))) 0.00769230769230769)
(((e a) ((e 1) (a 3))) 0.00769230769230769)
(((e a) ((e 1) (a 4))) 0.00769230769230769)
(((e a) ((e 1) (a 5))) 0.00769230769230769)
(((e a) ((e 1) (a 6))) 0.00769230769230769)
(((e a) ((e 1) (a 7))) 0.00769230769230769)
(((e b) ((e 1) (a 2) (b 3))) 0.00769230769230769)
(((e c) ((e 1) (a 2) (b 3) (c 5))) 0.00769230769230769)
(((e d) ((e 1) (a 2) (b 3) (d 4))) 0.00769230769230769)
(((e d) ((e 1) (a 2) (b 3) (d 5))) 0.00769230769230769)
(((e d) ((e 1) (a 2) (b 3) (d 6))) 0.00769230769230769)
(((e d) ((e 1) (a 2) (b 3) (d 7))) 0.00769230769230769))))
test/stream/nats
: pass(define (test/stream/nats _)
(let1 (nats (take§ 20 (nats§ 0)))
(⊦= '(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
(§->list nats))))
test/stream/fibs
: pass(define (test/stream/fibs _)
(let1 (fibs (take§ 20 (fibs§ 0 1)))
(⊦= '(0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181)
(§->list fibs))))
test/stream/ones
: pass(define (test/stream/ones _)
(let1 (ones (take§ 20 (const§ 1)))
(⊦= '(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (§->list ones))))
test/stream/primes
: pass(define (test/stream/primes _)
(let1 (primes (take§ 20 primes§))
(⊦= '(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71)
(§->list primes))))
test/stream/ones+τ
: pass(define (test/stream/ones+τ _)
(let1 (ones (take§ 20 (thunk§ 1)))
(⊦= '(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (§->list ones))))
test/procc/λ-memo
: pass(define (test/procc/λ-memo _)
(define count 0)
(define fib
(λ (n)
(add1! count)
(cond ((< n 2) n)
(else (let1 (m (sub1 n)) (+ (fib m) (fib (sub1 m))))))))
(let1 (v (fib 10)) (⊦= 55 v) (⊦= 177 count))
(set! count 0)
(define fib-memo
(λ-memo
(n)
(add1! count)
(cond ((< n 2) n)
(else (let1 (m (sub1 n)) (+ (fib-memo m) (fib-memo (sub1 m))))))))
(let1 (v (fib-memo 10)) (⊦= 55 v) (⊦= 11 count)))